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Learning a Nonnegative Sparse Graph
for Linear Regression

Xiaozhao Fang, Student Member, IEEE, Yong Xu, Senior Member, IEEE,
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Abstract— Previous graph-based semisupervised learning
(G-SSL) methods have the following drawbacks: 1) they usually
predefine the graph structure and then use it to perform label
prediction, which cannot guarantee an overall optimum and
2) they only focus on the label prediction or the graph structure
construction but are not competent in handling new samples.
To this end, a novel nonnegative sparse graph (NNSG) learning
method was first proposed. Then, both the label prediction and
projection learning were integrated into linear regression. Finally,
the linear regression and graph structure learning were unified
within the same framework to overcome these two drawbacks.
Therefore, a novel method, named learning a NNSG for linear
regression was presented, in which the linear regression and
graph learning were simultaneously performed to guarantee an
overall optimum. In the learning process, the label information
can be accurately propagated via the graph structure so that the
linear regression can learn a discriminative projection to better
fit sample labels and accurately classify new samples. An effective
algorithm was designed to solve the corresponding optimization
problem with fast convergence. Furthermore, NNSG provides
a unified perceptiveness for a number of graph-based learning
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methods and linear regression methods. The experimental results
showed that NNSG can obtain very high classification accuracy
and greatly outperforms conventional G-SSL methods, especially
some conventional graph construction methods.

Index Terms— Graph learning, linear regression, label
propagation, semi-supervised classification.

I. INTRODUCTION

IN THE past decades, a lot of dimension reduction
techniques have been proposed [1]–[5]. Principal

component analysis (PCA) is an unsupervised method
which can project high dimensional data into a lower
dimensional space by seeking the direction of maximum
variance for optimal data reconstruction [6], [7]. Linear
discriminant analysis (LDA) is a supervised dimension
reduction method which pursues a linear projection that
simultaneously maximizes the distances among the means
of the classes and minimizes the distances among the data
points sharing the same label using the Fisher’s criterion
[8]–[11]. Neighborhood component analysis (NCA) was
developed to directly optimize the expected leave-one-out
classification accuracy on the training set and the resulting
lower subspace seems to be more discriminant than those
obtained by PCA and LDA [12], [13]. Some nonlinear
dimension reduction techniques such as locally linear
embedding (LLE) [14] and Laplacian eigenmap [LE] [15]
were recently proposed to discover the intrinsic manifold
structure of the data. A drawback of LE is that it cannot deal
with new data points that are not included in the training set.
He et al. proposed the locality preserved projection (LPP)
to solve this problem, in which the learned linear projection
is used for handling the new data points [16]. In addition,
local learning projection (LLP) was proposed to address
this problem [17]. He et al. also proposed the neighborhood
preserving embedding (NPE) method for preserving the local
neighborhood structure on the data manifold [18].
Zhang et al. [19] demonstrated that many dimension
reduction methods can be reformulated into a unified patch
alignment framework. Yan et al. further reformulated some
dimension reduction methods (e.g., PCA, LDA, ISOMAP,
LLE, LE) into a unified graph embedding framework, in
which the desired geometric structure of data are encoded as
graph relationships [20].

In general, the labeled training samples are always
insufficient because the labeling data requires expensive
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labor [21]–[23]. The performance of some supervised
algorithms degenerates in the case of insufficient labeled
training samples. Semi-supervised learning is a method that
can improve the performance of algorithms in this case by
using the unlabeled samples obtained in much easier ways.
Some semi-supervised learning methods such as transductive
support vector machine (TSVM) [24], co-training [25], and
semi-supervised discriminant analysis (SDA) [26] were devel-
oped and demonstrated promising results. Recently, G-SSL
methods were proposed and aroused great interest among
researchers [27]–[29]. These methods model the geometric
relationship between all data points by the form of an affinity
graph and then propagate the label information from the
labeled data points to the unlabeled data points via the affinity
graph [22]. Thus the quality of the constructed graph is
of great importance to label propagation. The graph-based
regularization term is commonly used to improve the per-
formance of semi-supervised learning methods [30], [31].
By adding a graph-based regularization term, Laplacian sup-
port vector machines (LapSVM) and Laplacian regularized
least squares (LapRLS) [27], [32] achieved good classification
results. A flexible manifold embedding (FME) framework
was proposed for semi-supervised and unsupervised dimension
reduction, in which the low dimension representation of data
is obtained by linear regression [33]. Moreover, FME used
the learned projection to map new data points. The common
assumption of G-SSL methods is label consistency, i.e., nearby
points are prone to have the same labels. In most G-SSL
methods, graph construction is based on various techniques,
among which the popular ones include the k nearest neighbor
graph, local linear reconstruction graph proposed in LLE [14],
and �1 graph [34]. The performance of semi-supervised clas-
sification relies heavily on the graph construction process.
According to Wright et al. [35], an informative graph should
have three characteristics: suitable sparsity, high discriminant
power, and adaptive neighborhood. Conventional methods
(such as the k nearest neighbor graph and LLE graph) use
the specified nearest neighbor parameter and the setting may
be variational for different data sets and thus, the adaptive
neighborhood is lost in these methods. Although the �1 graph
is sparse, datum-adaptive and robust to data noise, it is only
to find the sparse representation for data reconstruction. How-
ever, the best data reconstruction does not represent the best
discriminate power [36]. In this way, the �1 graph may lose the
high discriminant power. What’s more, in most of these G-SSL
methods, their graph structures are pre-defined. As a conse-
quence, the graph construction and semi-supervised learning
algorithm are often independent steps, and hence the overall
optimum of the algorithm cannot be guaranteed. For example,
in FME, the graph structure was constructed in advance by the
k nearest neighbor graph technique which may result in that
the label prediction and projection learning may be not opti-
mal. Since label propagation relies heavily on the graph con-
struction process, a simultaneous approach which integrates
both label propagation and graph learning is demanded. Wang
et al. proposed a face annotation method by using weak label
regularized local coordinate coding (LCC) [37], in which the
sparse features and the graph-based weak label regularization

were simultaneously employed to enhance the weak labels
of similar facial images [38]. A similar strategy was also
used for joint learning of labels and distance metric, in which
the label prediction and distance metric were optimized in a
unified scheme [39]. In LCC, each data point can be locally
approximated by a linear combination of its nearby points.
In other words, the coding scheme in LCC can ensure that
nearby points are prone to have similar coding coefficients,
which is very similar to the assumption of the label consis-
tency. This observation motivated us to construct the graph
structure for label propagation by using LCC. Prior works
(e.g., LDA, LLP, NPE and FME) used the learned projection
to deal with new samples. We thus considered using the
projection to classify new samples. In order to guarantee an
overall optimum, the projection learning, label propagation and
graph structure learning should be completed in one step.

Based on the above observations, we proposed a novel
method, termed learning a non-negative sparse graph (NNSG)
for linear regression which is based on two previous works
LCC [37] and FME [33]. The whole learning process is
driven by the philosophy that the linear regression and graph
structure learning should be simultaneously performed to find
an overall optimum. With this simultaneous learning scheme,
the label information, in the learning process, can be accurately
propagated via the graph structure so that the linear regression
can learn a discriminative projection to better fit sample labels
and accurately classify new samples. An iterative procedure is
presented for solving the corresponding optimization problem
and it converges fast. The most important contributions of the
proposed method are as follows.

(1) Unlike previous G-SSL methods, in which the graph
structure and the designed algorithm are often independent
steps, NNSG integrates these two tasks into one single
optimization step to guarantee an overall optimum.

(2) NNSG not only solves two essential tasks in G-SSL,
i.e., label propagation and graph learning, but also can effec-
tively deal with new samples by the learned projection.
In other words, NNSG unifies the graph learning, label prop-
agation and projection learning within the same framework.

(3) An efficient optimized strategy is proposed to solve
the optimization problem. Some theoretical and experimental
analysis are presented to show the convergence behavior
of NNSG. Analysis is presented to compare NNSG and
existing graph-based learning methods and linear regression
methods, which is very useful to provide some insight for
explaining these methods.

This paper is organized as follows: Section II introduces
some related works. NNSG and the corresponding solution
are described in Section III. In Section IV, discussions are
provided. Extensive experiments are conducted in Section V.
Finally, some remarks are given in Section VI.

II. RELATED WORKS

Since our work in this paper is based on FME [33]
and LCC [37], we briefly review their formulations for
the sake of completeness. Sample set is denoted as
X = [x1, x2, ..., xu, xu+1, ..., xn] ∈ �m×n , where xi |ui=1 and
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x j |nj=u+1 are labeled and unlabeled samples, respectively. The
labels of labeled samples are denoted as yi ∈ {1, 2, ..., c},
where c is the total number of classes. The label indicator
binary matrix Y is defined as follows: for each training sample
xi (i = 1, ..., n), yi ∈ �c is its label vector, if xi is from the
kth class (k = 1, ..., c), then only the kth entry of y j is one
and all the other entries are zero.

A. Flexible Manifold Embedding (FME)

In this section, FME [33] is briefly reviewed.
In LapRLS/L [32], the predicted label matrix F is constrained
to lie within the space spanned by all training samples X .
In other words, F = X T W + 1bT is approximately satisfied,
in which 1 ∈ �n×1 is defined as a vector with all elements
as 1. W ∈ �m×c is the projection. F = X T W + 1bT may be
too strict to fit the samples sampled from a nonlinear manifold
because it is linear. Therefore, it is relaxed by modeling a
regression residue in FME. That is, F = X T W + 1bT + F0
is assumed to be satisfied, where F0 is the regression residue
modeling the mismatch between F and X T W + 1bT . The
advantage of this relaxation is that it is more flexible to cope
with the samples which reside on the nonlinear manifold.
FME aims to simultaneously predict the sample label
matrix F and minimize the regression residual F0, namely

(F∗, W∗, F∗
0 ) = arg min

F,W,F0
tr(F − Y )T U(F − Y )

+ tr(FT H F)+μ(‖ W ‖2 + γ ‖ F0 ‖2) (1)

where μ and γ are parameters to balance different terms,
H ∈ �n×n is the Laplacian matrix and U ∈ �n×n is the
diagonal matrix with the first μ and the rest of n − μ are
diagonal elements 1 and 0, respectively. tr(·) is the trace of a
square matrix. The first term in (1) represents the label fitness.
The second term in (1) is the graph embedding which is used
to propagate labels from labeled samples to unlabeled samples.
The last term in (1) controls the norm of projection matrix and
regression residue F0. Replacing F0 with X T W + 1bT − F ,
the objective function of FME can be reformulated as

(F∗, W∗, b∗)
= arg min

F,W,b
tr(F − Y )T U(F − Y )

+ tr(FT H F)+μ(‖ W ‖2 + γ ‖ X T W + 1bT −F ‖2) (2)

B. Local Coordinate Coding (LCC)

Sparse representation [40] has been successfully applied in
machine learning and computer vision. Wang et al. pointed out
that locality is more essential than sparsity, as locality must
lead to sparsity but not necessarily vice versa [35], [41], [42].
The goal of LCC [37] is to seek a new representation of
the input samples in which the samples are encoded by a
linear combination of several nearby samples among a given
dictionary. The input samples can be transformed into more
discriminative codes through the coding process.

Given a dictionary D = [d1, d2, ..., dK ] consisting of
K atoms with dimension of m, LCC computes a reconstruction

coefficient vector si ∈ �K to represent the input sample
xi ∈ �m by minimizing the following objective function

min
si

‖ xi − Dsi ‖2
2 +λ

K∑

k=1

∣∣∣sk
i

∣∣∣ ‖ D∗k − xi ‖2
2 (3)

where D∗k is the kth column of dictionary D and sk
i denotes

the kth element of the coding coefficient vector si . The
regularization term

∑K
k=1

∣∣sk
i

∣∣ ‖ D∗k − xi ‖2
2 ensures that

each input sample can be locally approximated by a linear
combination of its nearby atoms in the dictionary.

III. NNSG

In this section, the non-negative sparse graph (NNSG)
learning for linear regression is introduced. The task of NNSG
is to perform the linear regression and graph learning simul-
taneously. The linear regression is used to learn a projection
W ∈ �m×c for fitting sample labels F ∈ �n×c and classifying
new samples. Thus the linear regression can be formulated as

F = X T W + F0 (4)

where F0 is the regression residual [33]. Before introducing
the objective function of NNSG, we firstly present how to
learn a reasonable graph for label propagation.

A. The Graph Learning

For label propagation, it usually has the following assump-
tion: a sample and its nearest neighbors usually belong to the
same class. In the process of label propagation, these nearest
neighbors make great contribution in determining the label of
this sample. Similar samples should have similar neighbors
which is very helpful to propagate similar labels for these
similar samples. Therefore, an ideal graph should capture such
neighbor and similarity structure by allocating larger weights
to these nodes associated with this sample and its nearest
neighbors. The regularization term in (3) can automatically
determine the sample neighbors by using a measurement of the
distance between the sample and the atoms in the dictionary
and simultaneously assign larger weights to these sample
neighbors. However, the obtained reconstruction coefficient
in (3) cannot be directly used as the indication of graph weight
since it may be negative. Thus, we propose the following
objective function for the graph learning

min
S

‖ X − X S ‖2
F +λtr(�(S � M))

s.t. S ≥ 0, Sii = 0∀i (5)

where M ∈ �n×n , Mij = ‖ X∗i − X∗ j ‖2
2, � ∈ �n×n is

a matrix with all elements as 1. � is a Hadamard product
operator of matrices. The reconstruction coefficient matrix S
in (5) essentially reflects a close relation between the sample
pairs. Sii = 0 is used to avoid the trivial solution of (5).
The first term in (5) is to minimize the linear reconstruction
error. It should be noted that the LLE [14] framework also
tries to minimize the linear reconstruction error. However, the
minimization of linear reconstruction error in LLE is only
processed within the sample neighbors defined by the k nearest



FANG et al.: LEARNING A NONNEGATIVE SPARSE GRAPH FOR LINEAR REGRESSION 2763

neighbor or the ε-neighbor graph methods. Thus the structure
of graph adjacency has been determined by the previous step
and LLE only generates the corresponding graph weights.
In this way, the graph deduced by LLE is not optimal. The
structure of graph adjacency and weights are simultaneously
determined in (5) and thus it is natural to utilize (5) for the
graph learning.

The regularization term tr(�(S�M)) has three advantages:
1) It can ensure that each sample is more accurately repre-
sented by multiple nearby samples and larger weights can
be assigned to these nearby samples simultaneously, which
is useful for label propagation. 2) It allows nearby samples
to have nearly similar coding coefficients. Thus this coding
captures the similarity among samples by sharing similar
reconstruction coefficients. 3) It allows the graph construction
process to have sparsity, adaptive neighborhood and non-
negative weights. Thus, it is reasonable that S is used as the
graph weight matrix.

B. Learning a Non-Negative Sparse Graph for
Linear Regression

In NNSG, the graph learning and linear regression are
simultaneously completed within one step to guarantee an
overall optimum. The graph embedding (manifold smooth-
ness [33]) is used to link these two tasks. Based on FME and
the graph learning proposed in (5), we propose the following
objective function for NNSG.

�(F, W, S)

= arg min
F,W,S

γ∞
u∑

i=1

‖ Fi∗ − Yi∗ ‖2
2

+
n∑

i

n∑

j

‖ Fi∗ − Fj∗ ‖2
2 Si j + α ‖ X T W − F ‖2

F

+ λtr(�(S � M)) + β ‖ X − X S ‖2
F

s.t. S ≥ 0, Sii = 0 ∀i (6)

where γ∞ is a very large number such that Fi∗ = Yi∗
(i = 1, 2, ..., u) can be approximately satisfied, and F ∈ �n×c

is the predicted labels of both labeled and unlabeled samples.
The other variables follow the same definitions as in (4)
and (5). The first term evaluates the label fitness (i.e., F should
be close to the labels of the labeled samples). The second term
is the graph embedding (i.e., F should vary smoothly along the
geodesics on the whole graph of both labeled and unlabeled
samples) which is used to link the graph learning and linear
regression and propagate labels from the labeled samples to the
unlabeled samples. For the sample xi , the larger the weight Si j ,
the more contribution the label Fj∗ of the sample x j offers to
the prediction of the label Fi∗ for the sample xi . The purpose
of the third term is to minimize the regression residual. The
linear regression is used to learn the projection for fitting
samples labels and classifying new samples. The last two
terms aim to learn the graph structure. Three parameters α, λ,
and β are given to balance the importance of the corresponding

three terms. (6) can be further formulated as follows

�(F, W, S) = arg min
F,W,S

tr((F − Y )T U(F − Y ))

+ tr(FT L F) + α ‖ X T W − F ‖2
F

+ λtr(�(S � M)) + β ‖ X − X S ‖2
F (7)

where L = D−S is graph Laplacian, in which D is a diagonal

matrix with Dii =
∑

Si∗+∑
S∗i

2 . U ∈ �n×n is a diagonal matrix
with the first u and the rest of n − u diagonal elements as
γ∞ and 0, respectively.

The optimization problem of (7) can be solved by updating
F and S iteratively and calculating W independently.

Firstly, W is solved when F and S are fixed. The optimiza-
tion problem defined in (7) is written as

�(W ) = arg min
W

‖ X T W − F ‖2
2 (8)

It is an unconstrained optimization problem. If the derivative
of (8) with respect to W is set equal to zero, we will have

∂�(W )

∂W
= X X T W − X F = 0 ⇒ W = AF (9)

where A = (X X T )−1 X , if X X T is a singular square matrix,
A = (X X T + τ I )−1 X , where τ is a small positive constant
and I is the identity matrix.

Secondly, F is solved when W and S are fixed. The
optimization problem defined in (7) is written as

�(F) = arg min
F

tr((F − Y )T U(F − Y ))

+ tr(FT L F) + α ‖ X T W − F ‖2
F (10)

It is an unconstrained optimization problem. If W = AF is
integrated and the derivative of (10) with respect to F is set
equal to zero, we have

∂�(F)

∂ F
= U F − UY + L F + αZ F = 0

⇒ F = (U + L + αZ)−1UY (11)

where Z = ((X T A − I )T (X T A − I )).
Finally, S is solved when W and F are fixed. The optimiza-

tion problem defined in (7) is written as

�(S) = arg min
S

tr(FT L F) + λtr(�(S � M))

+ β ‖ X − X S ‖2
F

s.t. S ≥ 0, Sii = 0∀i (12)

It is also a constrained optimization problem, (12) can be
rewritten as

�(S) = arg min
S

tr(�(S � R)) + β ‖ X − X S ‖2
F

s.t. S ≥ 0, Sii = 0∀i (13)

where R = λM + V . Vij = ‖ Fi∗ − Fj∗ ‖2
2, Fi∗ is the i th row

of F . The optimization problem in (11) can be decomposed
into n independent sub-problems for each coding coefficient
S∗i corresponding to the sample X∗i and each sub-problem is
a weighted nonnegative sparse coding problem.

min
S∗i

n∑

k=1

Rk
∗i Sk

∗i + β ‖ X∗i − X S∗i ‖2
F

s.t. S ≥ 0, Sii = 0∀i (14)
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Algorithm 1 NNSG

where Sk∗i is the kth element of the coding coefficient vector
S∗i and Rk

∗i is the kth element of the i th column of matrix R.
Many algorithms can be used to solve (14), such as fast
iterative shrinkage and thresholding (FISTA) [36] and basis
pursuit (SP) [40]. In this paper, the alternating direction
method (ADM) [43], [44] is used to solve (14). It is a popular
and efficient method for solving the weight non-negative
sparse coding problem. This method can be regarded as a
first-order primal-dual algorithm since both primal and dual
variables are updated at each iteration.

From the above deduction procedure of solving problem (7),
we can see that variables S and F are closely dependent.
However, variable W is only related to variable F . Thus, we
only need to iteratively update S and F . After obtaining the
optimal solution of F , we can calculate W by W = AF .

The overall algorithm of NNSG is described in Algorithm 1.

IV. ALGORITHM ANALYSIS

In this section, related works are discussed, and then the
algorithmic convergence property is analyzed. It should be
noted that, to our knowledge, NNSG is the first work which
integrates the graph learning, label prediction, label propa-
gation and projection learning into one step. For simplicity
of discussion, in the following analysis, the graph Laplacian
matrix L is assumed to be given in advance in NNSG.

A. Connection to Graph-Based Methods

Local and global consistency (LGC) [28] and Gaussian
fields and harmonic function (GFHF) [29], two prominent
G-SSL methods can be seen as special cases of NNSG and
they share the same formulation [33]

min
F

tr(FT L F) + tr((F − Y )T U(F − Y )) (15)

where L is the (normalized) graph Laplacian matrix.
If α = λ = β = 0 and the graph structure is pre-defined, then
the objective function of NNSG will degrade into (15) which
is a general formulation for LGC and GFHF. Thus LGC and
GFHF are the special cases of NNSG. LGC and GFHF have
to encounter an out-of-sample problem [33] because they did
not deal with new samples. However, NNSG can map new

samples that are not included in the training set by using the
learned projection.

LapRLS/L [32] is a G-SSL method which is equivalent to
the special case of NNSG. If we set λ = β = 0 and α → ∞,
then F = X T W . Replacing F to (7), (7) can be rewritten as

min
F

tr((X T W − Y )T U(X T W − Y ))

+ tr(W T X L X T W ) + μ ‖ W ‖2
F (16)

The regularization term ‖ W ‖2
F is added to control the norm

of W . If the bias term b is absorbed, the objective function of
LapRLS/L becomes

min
W

1

λI
‖ X T W − Y ‖2

2 + tr(W T X L X T W ) + λA

λI
‖ W ‖2

F

(17)

If it is further assumed that L in (16) is the graph Laplacian
matrix, μ = λA

λI
and the first u and the rest of n − u diagonal

elements of U in (16) are 1
λI

and 0, respectively, then (16)
is equal to (17). Thus, LapRLS/L is also equivalent to
a special case of NNSG.

FME and NNSG have some similar components. If λ =
β = 0 is set and L is pre-defined as the graph Laplacian
matrix in order to prevent the trivial solution of S, the objective
function of NNSG can be represented as

min
F,W

tr((F − Y )T U(F − Y )) + tr(FT L F)

+ α ‖ X T W − F ‖2
F (18)

It can be found that the first two terms in FME and NNSG
have the same purposes.

B. Connection to Linear Regression Methods

Hou et al. [45] proposed a feature selection method via
embedding learning and sparse regression (JELSR). The objec-
tion function of JELSR is as follows

min
Y Y T =I

tr(Y LY T ) + β(‖ W T X − Y ‖2
F +α ‖ W ‖2,1) (19)

where Y is the lower dimension representation of samples and
‖ W ‖2,1 is used to select the related features. JELSR uses a
linear regression to relax the hard constraint in LapRLS/L.
If U → 0 and λ = β = 0 are set, then a new formulation for
NNSG is obtained

min
F,W

tr(FT L F) + α ‖ X T W − F ‖2
F (20)

The first two terms in (19) are the same as (20). In this way,
JELSR and NNSG share the same goals in terms of the linear
regression and graph embedding.

Similarly, Ma et al. [46] proposed a semi-supervised feature
analyzing framework for multimedia data understanding and
named structural feature selection with sparisity (SFSS).
The objective function of SFSS is as follows

min
F,W

tr((F − Y )T U(F − Y )) + tr(FT L F)

+ μ ‖ X T W − F ‖2
F + γ ‖ W ‖2,1 (21)
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where the bias term b is also absorbed. If λ = β = 0 is set,
then (7) will degraded into (18) which is the same as (21)
besides there is no the regularization term ‖ W ‖2

F in NNSG
in this case.

Other works including the spectral embedding
clustering (SEC) framework [47] and the spectral
regression (SR) [48] have some similar components as NNSG.
The related analyses are similar to that in [33].

C. Convergence Analysis

The optimization problem in (7) is non-convex due to the
non-convexity of objective function, and thus the globally
optimal solution cannot be guaranteed. Here, we can prove that
the iterative procedure will converge to a local optimum and
objective function of NNSG has a lower bound (at least bigger
than a constant δ > 0). From the inner loop of the iteration by
solving the subproblems (11) and (12), we know that for each
iteration the variables solution makes the objective function
achieve a local minimum. Therefore, in the outer loop, we
have �(Ft , St ) ≥ �(Ft+1, St ) ≥ �(Ft+1, St+1)) ≥ δ > 0.

Therefore, the objective function will converge to a local
optimum.

D. Computation Complexity of NNSG

This section analyzes the computation complexity of NNSG
described in Algorithm 1. The most computationally demand-
ing steps of Algorithm 1 are step 1 and 2. It is easy to justify
that calculating A will be O(2m2n + m3), and calculating
Z will be O(n2m + n3). Thus, in total, the computation
complexity of step 1 will be up to O(n3 + max{n3, n2c}).
The computation complexity of step 2 will be up to O(ιn3),
where ι is the number of iteration of calculating S. Another
computation complexity of calculating W will be O(nmc).
The computation complexity of algorithm 1 will be O(τ (n3 +
max{n3, n2c} + ιn3) + (nmc) + (2m2n + m3 + n2m + n3)),
where τ is the number of outside loop.

E. Discussion

By using the obtained projection W , the novel samples can
be accurately classified. From Algorithm 1, it can be see that
W is independent to the iterative process. After obtaining the
optimal solution of F , we can calculate W by W = AF .
As clearly shown in (11) (i.e., F = (U + L + αZ)−1UY )),
the discriminant information contained in the learned graph
(i.e., graph Laplacian L) is delivered into W by W = AF so
that the obtained projection matrix W can accurately classify
the novel samples. In other words, although W do not involve
the iterative process in Algorithm 1, W can obtain its optimal
solution due to the optimal F . The subsequent experimental
results show that the obtained W is competent to classify the
novel samples. The classification performance of W relies on
the quality of the learned graph S. If the obtained graph S
is optimal, W can classify the novel samples well. However,
in some real-world applications, data set may be corrupted by
the noise such as illumination and expression which can lead
to a low-quality graph. Thus, the classification performance

of W may slightly degrade on such data set. For example,
since large variations occur on the YaleB data set, the
classification accuracy of W slightly degrades on the data set
(see TABLE VI).

V. EXPERIMENTS

In our experiments, seven data sets were used, including
four face data sets ORL [49], YALEB [33], GEORGIA
TECH (GT) [42], AR [42], [49], an object data set
COIL-20 [37], a handwritten digit data set USPS [50],
and a spoken letter recognition data set Isolet5 [50].
The MATLAB code of NNSG is publicly available at
http://www.yongxu.org/lunwen.html.

A. Data Sets Descriptions

1) Face Data Sets: The images in all face data sets were
cropped and then resized to 32 × 32 pixels. The ORL data
set consists of 400 face images of 40 peoples. The images
were taken at different times, with varying lighting, facial
expressions (open/closed eyes, smiling/not smiling), and facial
details (glasses/no glasses). For YALEB data set, 38 persons
are used in this paper, with each person having around
64 near frontal images under different illuminations. The
GT face data set contains of 50 peoples with 15 images per
person. The images were taken with several variations such
as pose, expression, cluttered background, and illumination.
For AR data set, 3,120 gray images from 120 peoples were
used with each people providing 26 images. These images
were generated from frontal view faces with different facial
expression, conditions of illumination, and occlusion
(sun glasses and scarf).

2) Object Data Set: The COIL-20 data set consists of
images of 20 objects, and each object has 72 images captured
from varying angles at intervals of five degrees. All images
were cropped and then resized to 32 × 32 pixels.

3) Handwritten Digit Data Set: The USPS has training
set of 7291 samples and test set of 2007 samples. In the
experiments, 7000 images from 10 projects were randomly
selected with each project providing around 700 images. Each
image was of size 16 × 16 pixels.

4) Spoken Letter Recognition Data Set: The Isolet spoken
letter recognition data set contains 150 subjects who spoke the
name of each letter of the alphabet twice. The speakers are
grouped into sets of 30 speakers each, and are referred to as
Isolet1 through isolet5. In this work, Isolet5 data set consisting
of 1559 images from 26 peoples was used with each subject
providing about 60 images. This data set can be downloaded at
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

For the sake of computational efficiency, all data in these
seven data sets were eventually reduced to 60D vectors
by PCA.

B. Visualization of Graph Weight Matrix by Learned
From NNSG and Some Conventional Methods

In this section, the visual property of the non-negative
sparse graph weight matrix S learned by NNSG is demon-
strated. Specifically, the graphs used in the experiments for
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Fig. 1. Visualization of the graph weight matrix of the (a) k nearest neighbor
graph, (b) ε neighbor graph, (c) �1 graph, (d) LLE graph, (e) SPG, and
(f) NNSG graph.

comparison include: the k nearest neighbor graph (k-NN),
ε neighbor graph, LLE graph [51], �1 graph [34], and sparse
probability graph (SPG) [52] (SPG in essence is a sparse
coding problem with the non-negativity constraint). For the
LLE and �1 graph, the weight matrix S may be negative and

asymmetric and they were symmetrized by S = (|S|+∣∣ST
∣∣)

2 .
We construct these different graphs on the YALE [51] face
data set. The introduction of this data set is shown in [51]
and all images were finally also reduced to 60D vectors
by PCA. The first five images per subject were selected as
labeled samples and the rest of the images were selected
as unlabeled samples. For all graphs, model (7) was used
as the baseline to perform semi-supervised classification (the
Laplacian matrix L is pre-determined in conventional methods
by using the corresponding methods). For all compared graphs,
model parameters were carefully chosen to obtain the best
semi-supervised classification accuracies, and then the graphs
were displayed. The graph weight matrices are shown in
Fig. 1. From this figure, two observations can be made: 1) The
edges in NNSG are sparser than others. 2) There is much
less inter-subject adjacency structure in the NNSG graph than
in the others, which means the NNSG graph delivers strong

discriminant information and thus is more effective for label
propagation and classification than the other graphs.

C. Semi-Supervised Classification With Different Graphs

In this subsection, the semi-supervised classification was
done on the ORL, AR, YALEB, GT, and Isolet5 data sets using
the above mentioned different graphs. For fair comparison,
NNSG was also used as the baseline to perform the semi-
supervised classification. For the k-NN graph, ε neighbor
graph, LLE graph, �1 graph and SPG graph, the graph
Laplacian matrix L was also pre-defined by the corresponding
graph methods. The classification method proposed in [28]
was used for classification and the parameters were carefully
chosen to obtain the best classification results. For NNSG, only
the effectiveness of semi-supervised classification was tested.
The classification performance of the learned projection W is
tested in the next subsection. The value of parameters α, λ,
and β of NNSG were selected from the range (10−4, 100),
respectively. For each data set, different number of samples
per subject were randomly selected as the labeled samples
and the remaining were used as unlabeled samples and this
process was repeated 20 times and then the mean classification
accuracy and standard deviation are reported in Table I, from
which it can be observed that:

1) In most cases, NNSG consistently achieves the highest
classification accuracy in comparison with the other graphs,
even with very small amount of labeled samples. In many
cases, the improvements are very significant. This means that
the graph learned from NNSG is more effective for label
propagation and discriminant analysis.

2) The performance of the �1 graph and SPG graph
is similar in many cases since they all solve the sparse
coding problem besides a non-negative constraint in the
SPG graph. Although both the SPG graph and NNSG need
to solve non-negative sparse coding problem for constructing
the graph structure, NNSG integrates the graph learning and
linear regression into one step which can guarantee an overall
optimum. In other words, the graph structure learned by NNSG
can effectively capture the sample adjacent structure to accu-
rately propagate label information, thus NNSG outperforms
the SPG graph in most cases.

3) The performance of the LLE graph is consistently better
than that of the k-NN graph and ε neighbor graph. In this
experiment, it was found that it is extremely difficult to find
a proper ε for ε neighbor. On the contrary, the k-nearest
neighbor graph is generally more robust than the ε neighbor
graph. This observation is consistent with the conclusion
in [51].

D. Semi-Supervised Classification and
New Samples Classification

In this subsection, NNSG is compared with FME [33],
GFHF [29], Transductive component analysis (TCA) [53],
SDA [26], LapRLS/L [27], and MFA [20] for semi-supervised
classification and new samples classification by the learned
projection. For FME, SDA, LapRLS/L, MFA, TCA, the
nearest neighbor classification was used for classification.
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TABLE I

CLASSIFICATION PERFORMANCE (MEAN CLASSIFICATION ACCURACY ± STANDARD DEVIATION%) OF DIFFERENT GRAPHS AND

NNSG ON FIVE DATA SETS. NOTE THAT THE BOLD NUMBERS ARE THE BEST ACCURACIES FOR EACH CONFIGURATION AND

THE NUMBERS IN PARENTHESIS ARE THE NUMBER OF THE LABELED SAMPLES

TABLE II

CLASSIFICATION RESULTS FOR UNLABEL AND TEST USING THE COIL-20 DATA SET

TABLE III

CLASSIFICATION RESULTS FOR UNLABEL AND TEST USING THE USPS DATA SET

TABLE IV

CLASSIFICATION RESULTS FOR UNLABEL AND TEST USING THE ISOLET5 DATA SET

For GFHF and NSGG, the classification method proposed
in [28] was used for classification. For FME, SDA, LapRLS/L,
MFA, and TCA, the graph Laplacian matrix L is needed
to be determined beforehand. The graph weight matrix is

calculated as Si j = e
−‖xi−x j ‖2

σ , if xi is among the k
nearest neighbors of x j or x j is among the k nearest
neighbors of xi , Si j = 0, otherwise, where k and
σ are nearest neighbors and the heat kernel parameter

which was selected from the sets {3, 4, 5, 6, 7, 8, 9, 10}
and {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}, respec-

tively. For FME, SDA, LapRLS/L, MFA, TCA, the final
dimension was set to c (the number of classes) for
classification and their corresponding two parameters (e.g., μ
and γ in FME) were respectively selected from the set
{10−9, 10−8, ..., 108, 109}. The parameters α, λ and β of
NNSG were selected from the range (10−4, 100), respectively.
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TABLE V

CLASSIFICATION RESULTS FOR UNLABEL AND TEST USING THE ORL DATA SET

TABLE VI

CLASSIFICATION RESULTS FOR UNLABEL AND TEST USING THE YALEB DATA SET

The experiments are performed on these data sets: COIL-20,
USPS, Isolet5, ORL and YALEB. For each data set,
50% of samples per subject were randomly selected as the
training samples and the remaining samples were used as
the test samples. Among the training samples, p samples per
subject were randomly selected as the labeled samples and
remaining samples were used as unlabeled samples. The unla-
beled samples were used for semi-supervised classification and
the test samples were used as the new samples to test the
classification performance of the learned projection. For data
sets COIL-20, USPS, Isolet5 and ORL, we set p = 1, 2 and 3,
respectively. For the YALEB data set, we set p = 5, 10 and 15,
respectively. All training samples were used for learning the
projection, except that the labeled samples were used for
subspace learning in MFA. The mean classification accuracy
and standard deviation (%) over 30 random splits on the
unlabeled samples and the test samples, which are respectively
referred to as Unlabel and Test, are shown in Tables II-VI. The
results with the boldface are better than the others. From these
tables, the following conclusions can be drawn:

1) Semi-supervised classification methods TCA, SDA, and
LapRLS/L outperform the supervised classification method
MFA in terms of classification performance. This indicates
that unlabeled samples can indeed improve semi-supervised
classification performance.

2) The semi-supervised classification accuracy of GFHF is
better than TCA, SDA and LapRLS/L on some data sets.
However, when the images in the data sets have strong
variations (e.g., strong illuminations and expressions et al in
the YALEB face data set), the label may not be correctly
propagated in this case, which degrades the performance
of GFHF. The phenomenon is more evident on the YALEB
data set.

3) NNSG significantly outperforms all compared methods
on unlabeled samples, which demonstrates that the graph struc-
ture learned by NNSG encodes more discriminant information
and can more effectively propagate labels for unlabeled sam-
ples. This also demonstrates that it is necessary and effective to
simultaneously perform graph learning and label propagation.
The classification performance on the test samples using the
learned projection of SNGG is not consistently the best on all
data sets (FME obtains the best classification result for one
case on the YALEB data set), possibly because large variations
of images occurred in the data set. This may make the learned
projection subject to these variations of images, resulting
in slight degradation on classification performance.

E. Parametric Sensitivity and Algorithmic Convergence

NNSG requires three parameters α, λ, and β to be set in
advance. In this subsection, their sensitivity is discussed. The
classification accuracies variations with different parameters
are plotted in Fig. 2. It can be seen that the performance
changes are different with respect to different data sets.
However, the best classification performances for unlabeled
samples and test samples were always achieved with large
α and λ when the value of parameter β is fixed. Through
tuning the parameters α and λ, it can be observed that the
best results were achieved on the given data sets when α
and λ were close to one. When they were too small (such
as they close to 10−3), the performance obtained was very
bad. This demonstrates that the terms in (6) corresponding
to α and λ are more significant to learn a discriminative
projection. Specifically, the third term (linear regression) in
(6) is significant to learn a discriminative projection for fitting
labels and classifying new samples, while the fourth term in (6)
can guarantee that the learned graph can propagate the correct
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Fig. 2. Classification accuracies (AC) variation different values of parameters α, λ and β on the ORL (The first row), USPS (The second row) and YALEB
(The third row) data sets, respectively. 50% of samples per subject were randomly selected as training samples and remaining samples were used as test
samples and among training samples two samples per subject were randomly labeled on the ORL and USPS data sets and fifteen samples per subject were
labeled on the YALEB data set. The three sub-figures in the first and second columns are the classification accuracy variations with different α and λ on
the unlabeled and test samples, respectively, when the value of parameter β was fixed. The last three sub-figures in the third column were the classification
accuracy variations with different values of parameter β on the unlabeled and test samples when the values of parameters α and λ were fixed (a) Unlabel
(b) Test (c) Unlabel/Test (d) Unlabel (e) Test (d) Unlabel/Test (e) Unlabel (f) Test (g) Unlabel/Test.

label information. Finally, the sensitivity of the parameter
β to unlabeled samples and test samples classification was
evaluated, when the value of parameters α and λ were fixed. It
was observed that NNSG is relatively sensitive to β. From the
results in Fig.2, it can be seen that the best classification results
were achieved when β was in the middle interval of the tuned
range. When it was not too small or large, the performance was
good. How to identify the optimal values of these parameters
is data set dependent and still an open problem, which will be
studied in our future work. In the experiments, β was firstly
fixed in advance and an attempt was made to find a candidate
interval where the optimal parameters α and λ may exist. Then,

by fixing the value of α and λ in the candidate interval, the
candidate interval of β was determined. Finally, the optimal
parameters in the 3D candidate space of (α, λ, and β) with a
fixed step length were searched.

To solve the resulting optimization problem of NNSG, an
iterative update rule was developed. The convergence of the
update rule was proven in the section IV. The convergence
process using the proposed update rule on the ORL, USPS, and
YALEB data sets was experimentally shown in Fig.3. From
Fig.3, we can see that the proposed update rule converges
fast. Such fast convergence is mainly attributed to the process
of solving the sparse coding problem (12). During solving
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Fig. 3. Convergence process for NNSG on (a) ORL, (b) USPS and (c) YALEB data sets.

problem (12), some samples make very small contribution
in the reconstruction task and label fitness (i.e., the value of
Rij is very small) and these samples corresponding weighted
value in S are approximately set to zero, which is useful
to enhance the sparsity of S. As a result, the obtained S
has to be able to effectively capture the adjacency structure
of data, thus it can accurately propagate label information
so that F can approximately obtain its optimal solution.
Moreover, the experiments also showed that NNSG converges
fast, usually within 4 iterations for these three data sets, which
demonstrates that the proposed update rule is effective.

VI. CONCLUSION

In this paper, a novel non-negative sparse graph learning
method for linear regression is proposed, which simultane-
ously performs the graph learning and linear regression to
seek an overall optimum. The scheme of simultaneous learning
makes sure that the graph, in the process of learning, can
propagate accurate label information from the labeled samples
to unlabeled samples via the graph structure. Thus the linear
regression can learn an optimal projection to fit labels and
classify new samples. This paper provides an iterative update
rule to optimize the corresponding optimization problem and
a series of theoretical analysis of the convergence behavior
and the comparison of the related methods. Comprehensive
experiments on seven different data sets clearly show that the
proposed NNSG outperforms existing G-SSL methods. In our
future work, we will apply the idea of NNSG to some other
machine learning methods.
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